MATH-121, MATH-165 or MATH-164 and PHYS L151 concurrently
3.00
Introduction to the fundamental principles of physics using calculus. The course includes the study of vectors, Newton's laws, rotations, rigid body statics and dynamics, simple harmonic motion, heat and temperature.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: measurements, propagation of errors, vectors, Newton's laws, work and energy, momentum, rotations, oscillations, simple harmonic motion, fluid. Knowledge of algebra, trigonometry, differentiation and integration required.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS-151 and PHYS-L151. Must be taken concurrently with PHYS-L152.
3.00
This calculus based course begins with topics in kinetic theory and the laws of thermodynamics. It then covers electric charge and field, Gauss' law, electrical potential and capacitance, electric currents and DC circuits. Next magnetism, electromagnetic induction, Faraday's law and AC circuits are discussed. This is followed by Maxwell's equations, electromagnetic waves, and properties of light.
Offered Both Fall and Spring
SCI TECH ENGNR
PHYS 151 and L151 and PHYS 152 must be taken concurrently
1.00
The laboratory consists of experiments to illustrate the basic concepts studied in the course: heat, gas laws, electric forces, field, and potential, DC and AC circuits, magnetic field, electromagnetic induction, Faraday's law, optics. Calculus, algebra, trigonometry are required. Error propagation, use of Excel, laboratory notebooks, and formal reports required.
Offered Both Fall and Spring
SCI TECH ENGNR
MATH-121, MATH-164 or MATH-165
3.00
This calculus-based course is the introduction of the topics of modern physics. It begins with special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom. Then Schrodinger's equation is introduced with use of wave functions, particle box, barrier penetration, quantum mechanical tunneling, the Pauli Exclusion principle, the development of the periodic table, and the X-ray spectra. Development of solid state physics with bonding in molecules, band theory of solids and semiconductor behavior. The final topics cover nuclear physics, radioactivity, half-life, nuclear fission and fusion, medical uses of radiation, elementary particle physics and introduction to astrophysics.
Offered Fall Term
SCI TECH ENGNR
1.00
The laboratory consists of experiments to illustrate the basic concepts of special relativity, the Lorentz transformation, relativistic momentum and energy, addition of relativistic velocities, then covers early quantum theory, blackbody radiation, photoelectric effect, the Compton effect, photon interactions, pair production, and the Bohr theory of the atom.
SCI TECH ENGNR
Prerequisite: PHYS 151-152
4.00
An introduction to the concepts and methods of astrophysics; including a history of astronomy from the ancients to Newton; light; telescopes; sun, earth, moon planets, comets, asteroids, meteors, space programs, science and technology in society. Astronomy of the cosmos; sun, stars, interstellar materials, galaxies, pulsars, quasars, black holes; nature of time relativity, cosmology.
Offered Fall Term
PHYS 152 ; MATH 265 which may be taken concurrently
4.00
Newton's laws of motion, projectiles, momentum, energy, conservation laws, oscillations, Lagrange equations, generalized momenta, central forces, orbits. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS-153;
4.00
Topics include atoms and elementary particles, atomic, molecular and nuclear systems. Quantum states and probability amplitude, wave mechanics and thermal properties of matter. Atomic spectra and structure, and molecular systems. Nuclear reactions, alpha and beta decay and high energy physics. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
PHYS-361
4.00
Non-relativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once a week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
Take PHYS-361 and PHYS-362
4.00
Non-relativistic study of particle systems, wave mechanical treatment, development of the concepts of observables, state vectors, operators and matrix representations. Hilbert space, angular momenta, coupling, symmetries, scattering, and perturbation theory. Harmonic oscillator and Hydrogen atom. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Spring Term
PHYS-361, PHYS-151, PHYS-L151, PHYS-152, PHYS-L152, PHYS-153 and PHYS-L153
4.00
Macroscopic objects are made up of huge numbers of fundamental particles whose interactions are well understood. Physical properties that emerge from these interactions are, however, not simply related to these fundamental interactions. In this course we will develop the tools of statistical physics, which will allow us to predict emergent cooperative phenomena. We will apply those tools to a wide variety of physical questions, including the behavior of glasses, polymers, heat engines, magnets, and electrons in solids. Computer simulations will be extensively used to aid visualization and provide concrete realization of models in order to impart deeper understanding of statistical physics.
4.00
Electrostatic field energy, methods for solution of boundary value problems. The magnetostatic field and magnetic circuits. Electromagnetic field energy, plane waves, wave guides and cavity resonators. Interaction of charge particles with electromagnetic fields. This course is available in a hybrid/online format where all lectures are online and meetings with the instructor are required once per week. These meetings are for the purpose of helping students with homework problems, points in the video lectures they did not understand, or quizzes to test students' currency with the online material. These meetings are typically scheduled in a classroom but it is possible for a small number of students abroad to make special arrangements with the instructor so that the weekly meetings are held using online technology which supports voice and equation writing (such as the virtual classroom in Blackboard collaboration).
Offered Fall Term
Note: Most of these courses have substantial mathematics prerequisites (Calculus I, II, Multivariable Calculus) so it might not be possible for a non-science major to minor in physics.
Residency Requirement Policy: In the College of Arts and Sciences, a two-course residency requirement must be satisfied for completion of a minor and a four-course residency requirement must be satisfied for the completion of a major.